Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Curr Microbiol ; 79(12): 369, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253498

RESUMO

Kosakonia radicincitans GXGL-4A, a gram-negative nitrogen-fixing (NF) bacterial strain is coated with a thick capsulatus on the surface of cell wall, which becomes a physical barrier for exogenous DNA to enter the cell, so the operation of genetic transformation is difficult. In this study, an optimized Tn5 transposon mutagenesis system was established by using a high osmotic HO-1 medium combined with the electroporation transformation. Eventually, a mutant library containing a total of 1633 Tn5 insertional mutants were established. Of these mutants, the mutants M81 and M107 were found to have an enhanced capability to synthesize siderophore through the CAS agar plate assay and the spectrophotometric determination. The bacterial cells of two mutants were applied in cucumber growth-promoting experiment. Cucumber seedlings treated with M81 and M107 cells had a significant increase in biomass including seedling height, seedling fresh weight, root fresh weight, and root length. The whole genome sequencing of the mutants M81 and M107 showed that the integration sites of Tn5 transposon element were located in MmyB-like helix-turn-helix transcription regulator (locus tag: A3780_19720, trX) and aminomethyltransferase-encoding genes (locus tag: A3780_01680, amt) in the genome of GXGL-4A, respectively. The ability of siderophore synthesis of the target mutants was improved by Tn5 insertion mutagenesis, and the mutants obtained showed a good plant growth-promoting effect when applied to the cucumber seedlings. The results suggest that the identified functional genes regulates the biosynthesis of siderophore in azotobacter GXGL-4A, and the specific mechanism needs to be further investigated.


Assuntos
Cucumis sativus , Sideróforos , Ágar , Aminometiltransferase , Elementos de DNA Transponíveis , Mutagênese Insercional , Nitrogênio , Fatores de Transcrição
3.
Biotechnol Bioeng ; 118(3): 1366-1380, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33331660

RESUMO

Autotrophic or mixotrophic use of one-carbon (C1) compounds is gaining importance for sustainable bioproduction. In an effort to integrate the reductive glycine pathway (rGP) as a highly promising pathway for the assimilation of CO2 and formate, genes coding for glycine synthase system from Gottschalkia acidurici were successfully introduced into Clostridium pasteurianum, a non-model host microorganism with industrial interests. The mutant harboring glycine synthase exhibited assimilation of exogenous formate and reduced CO2 formation. Further metabolic data clearly showed large impacts of expression of glycine synthase on the product metabolism of C. pasteurianum. In particular, 2-oxobutyrate (2-OB) was observed for the first time as a metabolic intermediate of C. pasteurianum and its secretion was solely triggered by the expression of glycine synthase. The perturbation of C1 metabolism is discussed regarding its interactions with pathways of the central metabolism, acidogenesis, solventogenesis, and amino acid metabolism. The secretion of 2-OB is considered as a consequence of metabolic and redox instabilities due to the activity of glycine synthase and may represent a common metabolic response of Clostridia in enhanced use of C1 compounds.


Assuntos
Aminometiltransferase/biossíntese , Proteínas de Bactérias/biossíntese , Clostridium/enzimologia , Formiatos/farmacologia , Indução Enzimática/efeitos dos fármacos
4.
Amino Acids ; 52(10): 1413-1423, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33057941

RESUMO

Obesity is associated with altered glycine metabolism in humans. This study investigated the mechanisms regulating glycine metabolism in obese rats. Eight-week-old Zucker diabetic fatty rats (ZDF; a type-II diabetic animal model) received either 1% glycine or 1.19% L-alanine (isonitrogenous control) in drinking water for 6 weeks. An additional group of lean Zucker rats also received 1.19% L-alanine as a lean control. Glycine concentrations in serum and liver were markedly lower in obese versus lean rats. Enteral glycine supplementation restored both serum and hepatic glycine levels, while reducing mesenteric and internal white fat mass compared with alanine-treated ZDF rats. Blood glucose and non-esterified fatty acid (NEFA) concentrations did not differ between the control and glycine-supplemented ZDF rats (P > 0.10). Both mRNA and protein expression of aminomethyltransferase (AMT) and glycine dehydrogenase, decarboxylating (GLDC) were increased in the livers of obese versus lean rats (P < 0.05). In contrast, glycine cleavage system H (GCSH) hepatic mRNA expression was downregulated in obese versus lean rats, although there was no change in protein expression. These findings indicate that reduced quantities of glycine observed in obese subjects likely results from an upregulation of the hepatic glycine cleavage system and that dietary glycine supplementation potentially reduces obesity in ZDF rats.


Assuntos
Tecido Adiposo Branco/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Suplementos Nutricionais , Glicina/administração & dosagem , Fígado/efeitos dos fármacos , Obesidade/tratamento farmacológico , Tecido Adiposo Branco/metabolismo , Alanina/administração & dosagem , Alanina/metabolismo , Aminometiltransferase/genética , Aminometiltransferase/metabolismo , Animais , Regulação do Apetite/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus Tipo 2/metabolismo , Glicina/metabolismo , Proteína H do Complexo Glicina Descarboxilase/genética , Proteína H do Complexo Glicina Descarboxilase/metabolismo , Glicina Desidrogenase (Descarboxilante)/genética , Glicina Desidrogenase (Descarboxilante)/metabolismo , Fígado/metabolismo , Masculino , Obesidade/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Zucker
5.
Proc Natl Acad Sci U S A ; 117(13): 7516-7523, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32170009

RESUMO

Among CO2-fixing metabolic pathways in nature, the linear Wood-Ljungdahl pathway (WLP) in phylogenetically diverse acetate-forming acetogens comprises the most energetically efficient pathway, requires the least number of reactions, and converts CO2 to formate and then into acetyl-CoA. Despite two genes encoding glycine synthase being well-conserved in WLP gene clusters, the functional role of glycine synthase under autotrophic growth conditions has remained uncertain. Here, using the reconstructed genome-scale metabolic model iSL771 based on the completed genome sequence, transcriptomics, 13C isotope-based metabolite-tracing experiments, biochemical assays, and heterologous expression of the pathway in another acetogen, we discovered that the WLP and the glycine synthase pathway are functionally interconnected to fix CO2, subsequently converting CO2 into acetyl-CoA, acetyl-phosphate, and serine. Moreover, the functional cooperation of the pathways enhances CO2 consumption and cellular growth rates via bypassing reducing power required reactions for cellular metabolism during autotrophic growth of acetogens.


Assuntos
Aminoácido Oxirredutases/metabolismo , Aminometiltransferase/metabolismo , Processos Autotróficos/fisiologia , Complexos Multienzimáticos/metabolismo , Acetilcoenzima A/metabolismo , Aminoácido Oxirredutases/genética , Aminometiltransferase/genética , Proteínas de Bactérias/metabolismo , Ciclo do Carbono , Dióxido de Carbono/metabolismo , Monóxido de Carbono/metabolismo , Clostridium/metabolismo , Redes e Vias Metabólicas , Complexos Multienzimáticos/genética , Família Multigênica , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo
6.
Metab Brain Dis ; 34(1): 373-376, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30350008

RESUMO

Nonketotic Hyperglycinemia is an autosomal recessive disorder characterized by defects in the mitochondrial glycine cleavage system. Most patients present soon after birth with seizures and hypotonia, and infants that survive the newborn period often have profound intellectual disability and intractable seizures. Here we present a case report of a 4-year-old girl with NKH as well as hyperammonemia, an uncommon finding in NKH. Genetic analysis found a previously unreported homozygous mutation (c.878-1 G > A) in the AMT gene. Maximum Entropy Principle modeling predicted that this mutation most likely breaks the splice site at the border of intron 7 and exon 8 of the AMT gene. Treatment with L-Arginine significantly reduced both the proband's glycine and ammonia levels, in turn aiding in control of seizures and mental status. This is the first time the use of L-Arginine is reported to successfully treat elevated glycine levels.


Assuntos
Aminometiltransferase/genética , Hiperamonemia/genética , Hiperglicinemia não Cetótica/genética , Íntrons , Mutação , Pré-Escolar , Feminino , Homozigoto , Humanos , Hiperamonemia/complicações , Hiperglicinemia não Cetótica/complicações
7.
Planta ; 247(1): 41-51, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28866761

RESUMO

MAIN CONCLUSION: T-protein is present in large excess over the other proteins of the glycine cleavage system in leaves of Arabidopsis and therefore, exerts little control over the photorespiratory pathway. T-protein is the aminomethyltransferase of the glycine cleavage multienzyme system (GCS), also known as the glycine decarboxylase complex, and essential for photorespiration and one-carbon metabolism. Here, we studied what effects varying levels of the GCS T-protein would have on GCS activity, the operation of the photorespiratory pathway, photosynthesis, and plant growth. To this end, we examined Arabidopsis thaliana T-protein overexpression lines with up to threefold higher amounts of leaf T-protein as well as one knockdown mutant with about 5% residual leaf T-protein and one knockout mutant. Overexpression did not alter photosynthetic CO2 uptake and plant growth, and the knockout mutation was lethal even in the non-photorespiratory environment of air enriched to 1% CO2. Unexpectedly in light of this very low T-protein content, however, the knockdown mutant was able to grow and propagate in normal air and displayed only some minor changes, such as a moderate glycine accumulation in combination with somewhat delayed growth. Neither overexpression nor the knockdown of T-protein altered the amounts of the other three GCS proteins, suggesting that the biosynthesis of the GCS proteins is not synchronized at this level. We also observed that the knockdown causes less T-protein mostly in leaf mesophyll cells, but not so much in the vasculature, and discuss this phenomenon in light of the dual involvement of the GCS and hence T-protein in plant metabolism. Collectively, this work shows that T-protein is present in large excess over the other proteins of the glycine cleavage system in leaves of Arabidopsis and therefore exerts little control over the photorespiratory pathway.


Assuntos
Aminoácido Oxirredutases/metabolismo , Aminometiltransferase/metabolismo , Arabidopsis/enzimologia , Dióxido de Carbono/metabolismo , Proteínas de Transporte/metabolismo , Complexos Multienzimáticos/metabolismo , Transferases/metabolismo , Aminoácido Oxirredutases/genética , Aminometiltransferase/genética , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/genética , Expressão Gênica , Glicina/metabolismo , Complexos Multienzimáticos/genética , Mutação , Oxigênio/metabolismo , Fotossíntese , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Transferases/genética
8.
Mol Genet Metab ; 121(2): 80-82, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28462797

RESUMO

Historically, d-glyceric aciduria was thought to cause an uncharacterized blockage to the glycine cleavage enzyme system (GCS) causing nonketotic hyperglycinemia (NKH) as a secondary phenomenon. This inference was reached based on the clinical and biochemical results from the first d-glyceric aciduria patient reported in 1974. Along with elevated glyceric acid excretion, this patient exhibited severe neurological symptoms of myoclonic epilepsy and absent development, and had elevated glycine levels and decreased glycine cleavage system enzyme activity. Mutations in the GLYCTK gene (encoding d-glycerate kinase) causing glyceric aciduria were previously noted. Since glycine changes were not observed in almost all of the subsequently reported cases of d-glyceric aciduria, this theory of NKH as a secondary syndrome of d-glyceric aciduria was revisited in this work. We showed that this historic patient harbored a homozygous missense mutation in AMT c.350C>T, p.Ser117Leu, and enzymatic assay of the expressed mutation confirmed the pathogeneity of the p.Ser117Leu mutation. We conclude that the original d-glyceric aciduria patient also had classic NKH and that this co-occurrence of two inborn errors of metabolism explains the original presentation. We conclude that no evidence remains that d-glyceric aciduria would cause NKH.


Assuntos
Ácidos Glicéricos/urina , Hiperglicinemia não Cetótica/complicações , Hiperoxalúria Primária/complicações , Hiperoxalúria Primária/genética , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Aminometiltransferase/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Diagnóstico Diferencial , Epilepsia , Ácidos Glicéricos/metabolismo , Glicina/metabolismo , Homozigoto , Humanos , Hiperglicinemia não Cetótica/diagnóstico , Hiperglicinemia não Cetótica/etiologia , Hiperglicinemia não Cetótica/genética , Hiperoxalúria Primária/diagnóstico , Masculino , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Mutação de Sentido Incorreto , Fosfotransferases (Aceptor do Grupo Álcool)/deficiência , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Transferases/genética , Transferases/metabolismo
9.
FEBS J ; 284(12): 1855-1867, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28429420

RESUMO

In the cell, tetrahydrofolate (H4 folate) derivatives with a C1 unit are utilized in various ways, such as for the synthesis of amino acids and nucleic acids. While H4 folate derivatives with the C1 unit are typically produced in the glycine cleavage system, Sphingobium sp. strain SYK-6, which can utilize lignin-derived aromatic compounds as a sole source of carbon and energy, lacks this pathway, probably due to its unique nutrient requirements. In this bacterium, H4 folate-dependent O-demethylases in catabolic pathways for lignin-derived aromatic compounds seem to be involved in the C1 metabolism. LigM is one of the O-demethylases and catalyzes a C1-unit transfer from vanillate (VNL) to H4 folate. As the primary structure of LigM shows a similarity to T-protein in the glycine cleavage system, we hypothesized that LigM has evolved from T-protein, acquiring its unique biochemical and biological functions. To prove this hypothesis, structure-based understanding of its catalytic reaction is essential. Here, we determined the crystal structure of LigM in apo form and in complex with substrates and H4 folate. These crystal structures showed that the overall structure of LigM is similar to T-protein, but LigM has a few distinct characteristics, particularly in the active site. Structure-based mutational analysis revealed that His60 and Tyr247, which are not conserved in T-protein, are essential to the catalytic activity of LigM and their interactions with the oxygen atom in the methoxy group of VNL seem to facilitate a methyl moiety (C1-unit) transfer to H4 folate. Taken together, our structural data suggest that LigM has evolved divergently from T-protein. DATABASES: All atomic coordinates of the crystal structures determined in this study have been deposited to PDB. LigM: 5X1I, LigM-VNL complex: 5X1J, LigM-3-O-methylgallate complex: 5X1K, LigM-H4 folate complex: 5X1IL, LigM-H4 folate-protocatechuate (PCA) complex (P21 21 2): 5X1M, LigM-H4 folate-PCA complex (P31 21): 5X1N.


Assuntos
Oxirredutases O-Desmetilantes/química , Sphingomonadaceae/enzimologia , Sequência de Aminoácidos , Aminometiltransferase/química , Cristalografia por Raios X , Modelos Moleculares , Oxirredutases O-Desmetilantes/metabolismo , Conformação Proteica , Homologia de Sequência de Aminoácidos , Tetra-Hidrofolatos/metabolismo , Ácido Vanílico/metabolismo
10.
Genet Med ; 19(1): 104-111, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27362913

RESUMO

PURPOSE: The study's purpose was to delineate the genetic mutations that cause classic nonketotic hyperglycinemia (NKH). METHODS: Genetic results, parental phase, ethnic origin, and gender data were collected from subjects suspected to have classic NKH. Mutations were compared with those in the existing literature and to the population frequency from the Exome Aggregation Consortium (ExAC) database. RESULTS: In 578 families, genetic analyses identified 410 unique mutations, including 246 novel mutations. 80% of subjects had mutations in GLDC. Missense mutations were noted in 52% of all GLDC alleles, most private. Missense mutations were 1.5 times as likely to be pathogenic in the carboxy terminal of GLDC than in the amino-terminal part. Intragenic copy-number variations (CNVs) in GLDC were noted in 140 subjects, with biallelic CNVs present in 39 subjects. The position and frequency of the breakpoint for CNVs correlated with intron size and presence of Alu elements. Missense mutations, most often recurring, were the most common type of disease-causing mutation in AMT. Sequencing and CNV analysis identified biallelic pathogenic mutations in 98% of subjects. Based on genotype, 15% of subjects had an attenuated phenotype. The frequency of NKH is estimated at 1:76,000. CONCLUSION: The 484 unique mutations now known in classic NKH provide a valuable overview for the development of genotype-based therapies.Genet Med 19 1, 104-111.


Assuntos
Aminometiltransferase/genética , Complexo Glicina Descarboxilase/genética , Glicina Desidrogenase (Descarboxilante)/genética , Hiperglicinemia não Cetótica/genética , Alelos , Di-Hidrolipoamida Desidrogenase/genética , Éxons/genética , Feminino , Testes Genéticos , Genótipo , Glicina/genética , Glicina/metabolismo , Humanos , Hiperglicinemia não Cetótica/diagnóstico , Hiperglicinemia não Cetótica/patologia , Íntrons , Masculino , Mutação de Sentido Incorreto
11.
J Med Primatol ; 45(4): 189-94, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27325422

RESUMO

BACKGROUND: Non-ketotic hyperglycinaemia (NKH) is an autosomal recessive inborn error of glycine metabolism characterized by accumulation of glycine in body fluids and various neurological symptoms. METHODS: This study describes the first screening of NKH in cataract captive-bred vervet monkeys (Chlorocebus aethiops). Glycine dehydrogenase (GLDC), aminomethyltransferase (AMT) and glycine cleavage system H protein (GCSH) were prioritized. RESULTS: Mutation analysis of the complete coding sequence of GLDC and AMT revealed six novel single-base substitutions, of which three were non-synonymous missense and three were silent nucleotide changes. CONCLUSION: Although deleterious effects of the three amino acid substitutions were not evaluated, one substitution of GLDC gene (S44R) could be disease-causing because of its drastic amino acid change, affecting amino acids conserved in different primate species. This study confirms the diagnosis of NKH for the first time in vervet monkeys with cataracts.


Assuntos
Aminometiltransferase/genética , Catarata/veterinária , Chlorocebus aethiops , Proteína H do Complexo Glicina Descarboxilase/genética , Glicina Desidrogenase/genética , Hiperglicinemia não Cetótica/veterinária , Doenças dos Macacos/genética , Mutação Puntual , Sequência de Aminoácidos , Aminometiltransferase/química , Aminometiltransferase/metabolismo , Animais , Catarata/genética , Proteína H do Complexo Glicina Descarboxilase/química , Proteína H do Complexo Glicina Descarboxilase/metabolismo , Glicina Desidrogenase/química , Glicina Desidrogenase/metabolismo , Hiperglicinemia não Cetótica/genética , Mutação de Sentido Incorreto
12.
Arch. argent. pediatr ; 114(3): e142-e146, jun. 2016. ilus, tab
Artigo em Inglês, Espanhol | LILACS, BINACIS | ID: biblio-838213

RESUMO

La hiperglicinemia no cetósica es un raro trastorno metabólico autosómico recesivo hereditario causado por una deficiencia en el sistema enzimático de división de la glicina mitocondrial. Se desconoce la incidencia general de la hiperglicinemia no cetósica, aunque es mayor en ciertas poblaciones, como las del norte de Finlandia (1/12 000) y de la Columbia Británica (1/63 000). Se sabe que son tres los genes que causan hiper-glicinemia no cetósica: GLDC, AMT y GCSH. Las mutaciones en el gen AMT son responsables del 20% de los casos de hiperglicinemia no cetósica. En este artículo describimos una mutación novedosa del codón de terminación (c.565C>T, p.Q189*) del gen AMT en un niño de cuatro meses de vida con hiperglicinemia no cetósica.


Nonketotic hyperglycinemia is a rare autosomal recessively inherited metabolic disorder, caused by a deficiency in the mitochondrial glycine cleavage system. The overall incidence of nonketotic hyperglycinemia is unknown, but is higher in certain populations such as north Finland (1/12,000) and British Colombia (1/63,000). Three genes (GLDC, AMT and GCSH) are known to cause nonketotic hyperglycinemia. Mutations in the AMT gene are responsible for 20% of nonketotic hyperglycinemia cases. We describe a novel stop codon mutation (c.565C>T, p.Q189*) in AMT gene in a four-month male infant with nonketotic hyperglycinemia.


Assuntos
Humanos , Masculino , Lactente , Hiperglicinemia não Cetótica/genética , Aminometiltransferase/genética , Mutação
13.
Arch Argent Pediatr ; 114(3): e142-6, 2016 Jun 01.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-27164344

RESUMO

Panton-Valentine leukocidin (PVL) is an exotoxin that is produced by many strains of Staphylococcus aureus, and an important virulence factor. A PVL-positive S. aureus infection leads to rapid and severe infections of soft tissue and necrotizing pneumonia in healthy adolescents, and has a high mortality. This case report included a 12-year-old male patient who admitted for fever, respiratory distress and hip pain and was identified with necrotizing pneumonia with septic pulmonary embolism, psoas abscess, cellulitis and osteomyelitis. The PVL positive methicillin-sensitive S. aureus (MSSA) was isolated in the patient blood culture.


La hiperglicinemia no cetósica es un raro trastorno metabólico autosómico recesivo hereditario causado por una deficiencia en el sistema enzimático de división de la glicina mitocondrial. Se desconoce la incidencia general de la hiperglicinemia no cetósica, aunque es mayor en ciertas poblaciones, como las del norte de Finlandia (1/12 000) y de la Columbia Británica (1/63 000). Se sabe que son tres los genes que causan hiper-glicinemia no cetósica: GLDC, AMT y GCSH. Las mutaciones en el gen AMT son responsables del 20% de los casos de hiperglicinemia no cetósica. En este artículo describimos una mutación novedosa del codón de terminación (c.565C>T, p.Q189*) del gen AMT en un niño de cuatro meses de vida con hiperglicinemia no cetósica.


Assuntos
Aminometiltransferase/genética , Hiperglicinemia não Cetótica/genética , Mutação , Humanos , Lactente , Masculino
14.
Eur J Paediatr Neurol ; 20(1): 192-5, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26371980

RESUMO

Early myoclonic encephalopathy (EME) presents in neonatal period with erratic or fragmentary myoclonus and a burst-suppression electroencephalography (EEG) pattern. Nonketotic hyperglycinemia (NKH) is the most common metabolic cause of EME and genetic testing confirms the diagnosis of NKH in around 75% of the patients with a clinical diagnosis of NKH. Three genes are known to cause NKH. Here we describe a case of EME caused by NKH in which a new mutation in aminomethyltransferase (AMT) gene has been detected.


Assuntos
Aminometiltransferase/genética , Hiperglicinemia não Cetótica/genética , Espasmos Infantis/genética , Eletroencefalografia , Humanos , Hiperglicinemia não Cetótica/complicações , Recém-Nascido , Masculino , Mutação
15.
J Child Neurol ; 30(6): 789-92, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-24838951

RESUMO

Nonketotic hyperglycinemia (OMIM no. 605899) is an autosomal recessively inherited glycine encephalopathy, caused by a deficiency in the mitochondrial glycine cleavage system. Here we report 2 neonates who were admitted to the hospital with complaints of respiratory failure and myoclonic seizures with an elevated cerebrospinal fluid/plasma glycine ratio and diagnosed as nonketotic hyperglycinemia. We report these cases as 2 novel homozygous mutations; a missense mutation c.593A>T (p.D198 V) in the glycine decarboxylase gene and a splicing mutation c.339G>A (Q113Q) in the aminomethyltransferase gene were detected. We would like to emphasize the genetic difference of our region in inherited metabolic diseases once again.


Assuntos
Aminometiltransferase/genética , Glicina Desidrogenase (Descarboxilante)/genética , Hiperglicinemia não Cetótica/diagnóstico , Hiperglicinemia não Cetótica/genética , Epilepsias Mioclônicas/genética , Feminino , Predisposição Genética para Doença , Glicina/sangue , Glicina/líquido cefalorraquidiano , Homozigoto , Humanos , Recém-Nascido , Masculino , Mutação de Sentido Incorreto , Splicing de RNA , Insuficiência Respiratória/genética
16.
Mol Biochem Parasitol ; 197(1-2): 50-5, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25454081

RESUMO

T-protein, an aminomethyltransferase, represents one of the four components of glycine cleavage system (GCS) and catalyzes the transfer of methylene group from H-protein intermediate to tetrahydrofolate (THF) forming N(5), N(10)-methylene THF (CH2-THF) with the release of ammonia. The malaria parasite genome encodes T-, H- and L-proteins, but not P-protein which is a glycine decarboxylase generating the aminomethylene group. A putative GCS has been considered to be functional in the parasite mitochondrion despite the absence of a detectable P-protein homologue. In the present study, the mitochondrial localization of T-protein in the malaria parasite was confirmed by immunofluorescence and its essentiality in the entire parasite life cycle was studied by targeting the T-protein locus in Plasmodium berghei (Pb). PbT knock out parasites did not show any growth defect in asexual, sexual and liver stages indicating that the T-protein is dispensable for parasite survival in vertebrate and invertebrate hosts. The absence of P-protein homologue and the non-essentiality of T protein suggest the possible redundancy of GCS activity in the malaria parasite. Nevertheless, the H- and L-proteins of GCS could be essential for malaria parasite because of their involvement in α-ketoacid dehydrogenase reactions.


Assuntos
Aminometiltransferase/genética , Aminometiltransferase/metabolismo , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Animais , Técnicas de Inativação de Genes , Marcação de Genes , Genes Essenciais , Estágios do Ciclo de Vida , Camundongos , Fenótipo , Plasmodium berghei/crescimento & desenvolvimento , Transporte Proteico
17.
J Hum Genet ; 59(11): 593-7, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25231368

RESUMO

Glycine encephalopathy (GCE) or nonketotic hyperglycinemia is an inborn error of glycine metabolism, inherited in an autosomal recessive manner due to a defect in any one of the four enzymes aminomethyltransferase (AMT), glycine decarboxylase (GLDC), glycine cleavage system protein-H (GCSH) and dehydrolipoamide dehydrogenase in the glycine cleavage system. This defect leads to glycine accumulation in body tissues, including the brain, and causes various neurological symptoms such as encephalopathy, hypotonia, apnea, intractable seizures and possible death. We screened 14 patients from 13 families with clinical and biochemical features suggestive of GCE for mutation in AMT, GLDC and GCSH genes by direct sequencing and genomic rearrangement of GLDC gene using a multiplex ligation-dependant probe amplification. We identified mutations in all 14 patients. Seven patients (50%) have biallelic mutations in GLDC gene, six patients (43%) have biallelic mutations in AMT gene and one patient (7%) has mutation identified in only one allele in GLDC gene. Majority of the mutations in GLDC and AMT were missense mutations and family specific. Interestingly, two mutations p.Arg265His in AMT gene and p.His651Arg in GLDC gene occurred in the Penan sub-population. No mutation was found in GCSH gene. We concluded that mutations in both GLDC and AMT genes are the main cause of GCE in Malaysian population.


Assuntos
Aminometiltransferase/genética , Predisposição Genética para Doença/genética , Proteína H do Complexo Glicina Descarboxilase/genética , Glicina Desidrogenase (Descarboxilante)/genética , Hiperglicinemia não Cetótica/genética , Mutação , Sequência de Bases , Análise Mutacional de DNA/métodos , Saúde da Família , Feminino , Genótipo , Humanos , Recém-Nascido , Masculino
18.
Nutr Metab Cardiovasc Dis ; 24(5): 483-8, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24418380

RESUMO

BACKGROUND AND AIMS: Several epidemiological studies highlighted the association between folate and B-vitamins low intake and cardiovascular diseases (CVD) risk. Contrasting results were reported on the relationship between folate intake and DNA-methylation. Folate and B-vitamins may modulate DNA-methylation of specific enzymes which are included in the One-Carbon Metabolism (OCM) and in the homocysteine (Hcy) pathways. The aim of the study was to evaluate whether DNA-methylation profiles of OCM and Hcy genes could modulate the myocardial infarction (MI) risk conferred by a low B-vitamins intake. METHODS AND RESULTS: Study sample (206 MI cases and 206 matched controls) is a case-control study nested in the prospective EPIC cohort. Methylation levels of 33 candidate genes where extracted by the whole epigenome analysis (Illumina-HumanMethylation450K-BeadChip). We identified three differentially methylated regions in males (TCN2 promoter, CBS 5'UTR, AMT gene-body) and two in females (PON1 gene-body, CBS 5'UTR), each of them characterized by an increased methylation in cases. Functional in silico analysis suggested a decreased expression in cases. A Recursively Partitioned Mixture Model cluster algorithm identified distinct methylation profiles associated to different MI risk: high-risk vs. low-risk methylation profile groups, OR = 3.49, p = 1.87 × 10(-)(4) and OR = 3.94, p = 0.0317 in males and females respectively (multivariate logistic regression adjusted for classical CVD risk factors). Moreover, a general inverse relationship between B-vitamins intake and DNA-methylation of the candidate genes was observed. CONCLUSIONS: Our findings support the hypothesis that DNA-methylation patterns in specific regions of OCM and Hcy pathways genes may modulate the CVD risk conferred by folate and B-vitamins low intake.


Assuntos
Metilação de DNA/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Infarto do Miocárdio/epidemiologia , Complexo Vitamínico B/administração & dosagem , Adulto , Aminometiltransferase/genética , Arildialquilfosfatase/genética , Estudos de Casos e Controles , Feminino , Seguimentos , Homocisteína/biossíntese , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Infarto do Miocárdio/prevenção & controle , Regiões Promotoras Genéticas , Estudos Prospectivos , Fatores de Risco , Transcobalaminas/genética
19.
J Neurosci ; 33(11): 4683-92, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23486942

RESUMO

After ischemic stroke, the corresponding area contralateral to the lesion may partly compensate for the loss of function. We previously reported the remodeling of neuronal circuits in the contralateral somatosensory cortex (SSC) during the first week after infarction for processing bilateral information, resulting in functional compensation. However, the underlying processes in the contralateral hemisphere after stroke have not yet been fully elucidated. Recent studies have shown that astrocytes may play critical roles in synaptic reorganization and functional compensation after a stroke. Thus, we aim to clarify the contribution of astrocytes using a rodent stroke model. In vivo calcium imaging showed a significantly large number of astrocytes in the contralateral SSC responding to ipsilateral limb stimulation at the first week after infarction. Simultaneously, extracellular glutamine level increased, indicating the involvement of astrocytes in the conversion of glutamate to glutamine, which may be an important process for functional recovery. This hypothesis was supported further by the observation that application of (2S,3S)-3-{3-[4-(trifluoromethyl)benzoylamino]benzyloxy} aspartate, a glial glutamate transporter blocker, disturbed the functional recovery. These findings indicate the involvement of astrocytes in functional remodeling/recovery in the area contralateral to the lesion. Our study has provided new insights into the mechanisms underlying synaptic remodeling after cerebral infarction, which contributes to the development of effective therapeutic approaches for patients after a stroke.


Assuntos
Astrócitos/fisiologia , Lateralidade Funcional/fisiologia , Córtex Somatossensorial/fisiopatologia , Acidente Vascular Cerebral/patologia , Aminometiltransferase/genética , Aminometiltransferase/metabolismo , Análise de Variância , Animais , Ácido Aspártico/análogos & derivados , Ácido Aspártico/uso terapêutico , Cálcio/metabolismo , Modelos Animais de Doenças , Transportador 1 de Aminoácido Excitatório/genética , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Ácido Glutâmico/metabolismo , Glicina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microdiálise , Atividade Motora , Neurônios/metabolismo , Estimulação Física , RNA Mensageiro/metabolismo , Córtex Somatossensorial/efeitos dos fármacos , Córtex Somatossensorial/patologia , Acidente Vascular Cerebral/tratamento farmacológico , Fatores de Tempo , Vibrissas/inervação
20.
Hum Mol Genet ; 21(7): 1496-503, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22171071

RESUMO

Neural tube defects (NTDs), including spina bifida and anencephaly, are common birth defects of the central nervous system. The complex multigenic causation of human NTDs, together with the large number of possible candidate genes, has hampered efforts to delineate their molecular basis. Function of folate one-carbon metabolism (FOCM) has been implicated as a key determinant of susceptibility to NTDs. The glycine cleavage system (GCS) is a multi-enzyme component of mitochondrial folate metabolism, and GCS-encoding genes therefore represent candidates for involvement in NTDs. To investigate this possibility, we sequenced the coding regions of the GCS genes: AMT, GCSH and GLDC in NTD patients and controls. Two unique non-synonymous changes were identified in the AMT gene that were absent from controls. We also identified a splice acceptor site mutation and five different non-synonymous variants in GLDC, which were found to significantly impair enzymatic activity and represent putative causative mutations. In order to functionally test the requirement for GCS activity in neural tube closure, we generated mice that lack GCS activity, through mutation of AMT. Homozygous Amt(-/-) mice developed NTDs at high frequency. Although these NTDs were not preventable by supplemental folic acid, there was a partial rescue by methionine. Overall, our findings suggest that loss-of-function mutations in GCS genes predispose to NTDs in mice and humans. These data highlight the importance of adequate function of mitochondrial folate metabolism in neural tube closure.


Assuntos
Aminometiltransferase/genética , Proteína H do Complexo Glicina Descarboxilase/genética , Glicina Desidrogenase (Descarboxilante)/genética , Mutação , Defeitos do Tubo Neural/genética , Animais , Complexo Glicina Descarboxilase/metabolismo , Humanos , Camundongos , Camundongos Knockout , Mutação de Sentido Incorreto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...